商品情報にスキップ
1 2

Assessing Prediction Accuracy of Machine Learning Models

通常価格 ¥1,144 JPY
通常価格 セール価格 ¥1,144 JPY
セール 売り切れ
税込み。
書籍サイズ
ページ数

The note introduces a variety of methods to assess the accuracy of machine learning prediction models. The note begins by briefly introducing machine learning, overfitting, training versus test datasets, and cross validation. The following accuracy metrics and tools are then described: mean squared error (MSE), mean absolute deviation (MAD), Brier score, and cross-entropy, true/false positives/negatives, the confusion matrix, true positive rate (sensitivity or recall), false negative rate (Type II error rate), precision, true negative rate (specificity), false positive rate (Type I error rate), receiver operating characteristic curve (ROC) and area under the curve (AUC), and precision-recall curve.

【書誌情報】

ページ数:12ページ

サイズ:A4

商品番号:HBSP-621045

発行日:2020/8/25

登録日:2021/3/8

1 3